
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Block Blast Puzzle Solver Using the A*
Search Algorithm

Penyelesaian Puzzle Block Blast Menggunakan Algoritma Pencarian A*

Aliya Husna Fayyaza - 13523062
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: aliyahfayyaza@gmail.com1, 13523062@std.stei.itb.ac.id2

Abstract—This paper presents an implementation of the A*
search algorithm to solve the Block Blast puzzle. The game
involves placing a fixed number of randomly shaped blocks
into a two-dimensional board without overlapping or
exceeding the board boundaries. The algorithm explores
possible placements by evaluating board states based on the
number of blocks placed and a heuristic estimation of usable
space. The heuristic function computes the total area of
empty regions large enough to fit the remaining blocks,
ensuring admissibility by never overestimating the potential
for block placement. Experimental results show that the A*
algorithm is both effective and efficient in finding valid
solutions or determining when no solution exists. This
approach demonstrates the applicability of informed search
algorithms in solving logic puzzles.
Keywords—block puzzle, heuristic search, A* algorithm,
game solver, pathfinding.

I. INTRODUCTION
 There are many algorithms that can be used to solve
logical puzzle games, ranging from brute force approaches to
more advanced informed search techniques such as Greedy
Best-First Search, Uniform Cost Search (UCS), and the A*
(A Star) algorithm. Among these, A* is widely regarded as
one of the most effective and versatile algorithms due to its
ability to combine the advantages of UCS and Greedy Search.
By using a heuristic to estimate the remaining cost, A* can
efficiently guide the search process toward a valid solution
while minimizing unnecessary explorations.
 One puzzle game that can benefit from this approach
is Block Blast, a tile-based puzzle game where players are
given a limited set of block pieces and must place them
strategically on a board to maximize coverage and avoid
running out of space.
 This paper presents a solution to the Block Blast
puzzle using the A* algorithm. By modelling the board state
and available pieces as nodes and transitions in a search
space, A* can intelligently explore possible placements,
aiming to find a complete solution where all pieces fit within
the board. The following sections describe the formulation of
the problem, the design of the heuristic, and the
implementation of the solver.

II. BASIC THEORY

A. Graph
 A graph G is formally defined as an ordered pair G
= (V,E) where 𝑉 is a non-empty set of vertices and E is a non-
empty set of edges connecting pairs of vertices. For a
structure to qualify as a graph, it must contain at least one
vertex and one edge. The number of edges incident to a vertex
is referred to as the degree of that vertex.
 Graphs can be classified based on their structural
properties. A simple graph is one that contains no loops
(edges connecting a vertex to itself) and no multiple edges
between the same pair of vertices. In contrast, an unsimple
graph allows for loops and/or multiple edges. Unsimple
graphs are further categorized into two types: multigraphs,
which permit multiple edges between the same pair of
vertices, and pseudographs, which include both loops and
multiple edges. [1]

Fig 1. Simple graph examples

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)

Fig 2. Unsimple graph examples

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig 3. Unsimple graph categories

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)
 Another way to classify graphs is based on the
directionality of their edges. An undirected graph has edges
that do not point in any specific direction, meaning the
connection between two vertices is bidirectional. On the other
hand, a directed graph or digraph uses arrows to indicate the
direction of each edge, signifying a one-way relationship
between vertices.[1]

Fig 4. Directed graph example

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)
 Graphs are widely used in various fields due to their
ability to model relationships and connections. Applications
include electrical circuit design, chemical compound
structures, routing and scheduling, medical imaging,
transportation networks, social media platforms, and
computer network topologies.[6]

B. Tree
 A tree is a connected, undirected graph with no
cycles. Formally, a graph G = (V,E) with n vertices is a tree
if it satisfies any of the following equivalent conditions:

1. G is connected and acyclic.
2. Any two vertices are connected by exactly one

simple path.
3. G has n−1 edges and is connected.
4. G has n−1 edges and no cycles.
5. Adding any edge creates exactly one cycle.
6. All edges are bridges.

Furthermore, a forest is a collection of disjoint trees, or an
acyclic graph that is not necessarily connected.[2]

 In computer science, trees are used to represent
hierarchical data. Their acyclic and connected nature makes
them ideal for structures like game development, databases,
and machine learning.[7] Trees are also used as the basis for

many data structures such as binary trees, heaps, and syntax
trees.

C. Uninformed and Informed Search in Pathfinding
 Search strategies are generally divided into two

categories: uninformed or blind search and informed or
heuristic-based search. Uninformed search algorithms do not
utilize any information about the proximity of a state to the
goal. They explore the search space blindly, typically using
simple strategies such as Breadth-First Search (BFS), Depth-
First Search (DFS), or Uniform Cost Search (UCS).

 In contrast, informed search algorithms incorporate
additional knowledge in the form of heuristics to estimate the
cost of reaching the goal from a given node. For example,
there are the Greedy Best-First Search algorithm where it only
consider the heuristic function to determine its expansion and
the A* Algorithm where it also take the actual cost into
account. This allows Greedy Best-First Search and A* to
prioritize more promising nodes and significantly reduce the
number of states explored during the search process[3] .Yet,
because of its heuristic-only consideration, the Greedy Best-
First Search does not guaranteed to find the shortest path[5].

C. A* Algorithm
 The A* (A star) algorithm is one of the most widely
used informed search strategies in artificial intelligence and
algorithm design. It is valued for
its completeness and optimality, as long as the heuristic
function employed is admissible—meaning it never
overestimates the true cost to reach the goal. A* operates by
evaluating each node using the cost function:

𝑓(n) 	= 	g(n) 	+ 	h(n)

where g(n) represents the actual cost from the start node to
the current node n, and h(n) is a heuristic estimate of the cost
from node n to the goal. By combining both real and
estimated costs, A* is able to strike a balance between depth-
first exploitation of known good paths and breadth-first
exploration of new possibilities.
 The algorithm proceeds by always expanding the
node with the lowest f(n) value from a priority queue,
ensuring that paths with the most promising cost estimates
are explored first. The exploration algorithm itself uses the
Best-First Search algorithm. This strategy guarantees that the
first solution found is the optimal one, as long as the heuristic
is admissible and consistent.[5]

A* possesses the following key properties:
• Completeness: A* is complete as long as the

branching factor is finite and all edge costs are
greater than zero. It will eventually find a solution if
one exists, unless there are infinitely many nodes
with cost 𝑓(𝑛) 	≤ 	𝑓(𝐺), where G is the goal node.

• Time Complexity: In the worst case, time
complexity is exponential, specifically 𝑂(𝑏𝑚),
where b is the branching factor and m is the depth of
the shallowest goal.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

• Space Complexity: A* maintains all generated
nodes in memory to guarantee optimality, which
leads to a space complexity of 𝑂(𝑏𝑚) as well.

• Optimality: A* is optimal provided that the heuristic
function is admissible. It always finds the least-cost
path to the goal.[3]

 Due to these characteristics, A* is extensively
applied in various domains such as pathfinding, puzzle
solving, and route planning. Its performance, however, is
heavily dependent on the heuristic function used.
 Several heuristic functions are commonly used in
search algorithms, each suited to different types of problems
depending on the structure of the state space. One widely
used heuristic is the Euclidean distance, which calculates the
straight-line distance between two points. This is particularly
effective in continuous, geometric spaces where diagonal
movement is allowed and cost is proportional to physical
distance.
 Another popular heuristic is the Manhattan distance,
which sums the absolute differences of the horizontal
coordinate and the vertical coordinate. It is commonly used
in grid-based environments where movement is restricted to
horizontal and vertical directions, such as in mazes or tile-
based puzzles. The Chebyshev distance is another variant,
defined as the maximum difference between the coordinates
of two points. This heuristic is useful when movement in all
eight directions is allowed, and each step has equal cost.[4]

 Choosing the right heuristic function depends on the
nature of the problem and the allowed movements in the state
space. A well-designed heuristic helps reduce the search
space while preserving admissibility and optimality.

D. Admissible Heuristic
 An admissible heuristic is a heuristic function that
never overestimates the actual minimum cost from any node
to the goal. Formally, for every node n, it must satisfy the
condition:

ℎ(𝑛) ≤ ℎ∗(𝑛)	

where h*(n) is the true cost of the shortest path from
node n to the goal. This characteristic makes an admissible
heuristic optimistic, as it always estimates the remaining cost
as equal to or less than the actual cost. The use of an
admissible heuristic is critical for ensuring that the A*
algorithm finds the optimal path. According to the
admissibility theorem, if h(n) is admissible, then A*
with tree-search is guaranteed to return an optimal solution,
assuming all step costs are non-negative.
 A classic example of an admissible heuristic is
the straight-line distance (SLD) used in route-finding
problems. SLD never overestimates the actual travel distance
on a road map, making it a reliable heuristic for geographical
search problems.[3]

Fig 5. Inadmissible heuristic function example

(source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/22-Route-Planning-(2025)-Bagian2.pdf)

 If a heuristic is not admissible, A* may fail to find
the optimal path. For example, if a node Y has g(Y)+h(Y)=74,
while another node X in the optimal path has g(X)+h(X)=102
due to an overestimated heuristic h(X), the algorithm will
wrongly prioritize expanding node Y, and the optimal path
through X may be ignored or delayed. Therefore, selecting a
good admissible heuristic is crucial in practice. It not only
guarantees correctness but also significantly reduces the
search space, making A* both sound and efficient.

E. Block Blast Game

Fig 6. Block Blast game interface

(source: https://blockblastonline.com)
 Block Blast is a tile-based puzzle game played on a
fixed 8×8 square grid. The player is presented with three
blocks of random shapes, which must be placed onto the
board. The objective is to fill entire rows or columns to clear
them and score points. Once placed, blocks cannot be moved
or rotated, making every decision permanent and strategic
because the order of the placement of the blocks also matters.
 The game ends when no combination of the
placement order of the three available blocks can fit into the
remaining empty spaces on the board. This constraint
encourages players to think several moves ahead and manage
space efficiently.
This game can be modelled as a search problem, where:

• The current configuration of the board represents the
state.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

• Placing a block at a legal position is considered an
action.

• The goal state is any configuration where all three
blocks can be successfully placed.

 By framing the game in this way, Block Blast
becomes a suitable domain for applying search algorithms
such as A*, particularly when evaluating different strategies
for block placement and estimating usable space through
heuristic functions.

III. HEURISTIC FUNCTION USED
 In the A* search algorithm, the heuristic function
plays a critical role in estimating the desirability of a given
state in relation to reaching the goal. In this implementation,
the heuristic is designed to assess how much usable space
remains on the board for placing the remaining blocks. The
heuristic works by identifying all contiguous regions of
empty cells on the board, summing the sizes of those regions
that are at least large enough to fit the smallest remaining
block, and then negating this value so that states with more
usable space receive lower f(n) scores and are prioritized by
A*.
 Despite the unconventional approach of negating a
space-based measurement, this heuristic remains admissible
because it never overestimates the true cost to reach the goal.
The key insight is that the chosen heuristic does not actually
estimate cost, instead, it provides the quality of solution
represented by the node. The heuristic makes no assumptions
about whether that space will be used successfully, nor does
it guarantee that the available space can accommodate all
remaining blocks in a valid configuration. It simply counts
empty regions without considering placement constraints,
overlapping requirements, or the complex spatial
relationships between different blocks (the row or column
clearing constraint). Since the heuristic only provides
an optimistic upper bound on usable space, it never suggests
that a goal state is closer than it actually is. Even when
negated, the heuristic maintains its conservative nature by
avoiding any overestimation of progress toward the goal. The
negative values merely serve as a prioritization mechanism,
ensuring that more spacious states are explored first, while
the underlying measurement remains a safe underestimate of
the actual solution complexity. This preservation of
admissibility ensures that A* will find an optimal solution if
one exists, while benefiting from informed search efficiency.

IV. Implementation
 The implementation of the Block Blast solver using
the A* algorithm is structured into several modular
components that handle input parsing, state representation,
heuristic evaluation, search execution, and output
visualization. Python is chosen due to its concise syntax and
powerful support for data manipulation, which is especially
beneficial for grid-based puzzle problems like Block Blast.

A. Required Dependencies
 In this implementation, several Python libraries are
used to support core functionalities of the solver:

1. numpy:
Used extensively for numerical and matrix
operations. In this implementation, numpy is
responsible for representing the game board and
blocks as 2D arrays, enabling efficient manipulation
of grid-based data.

2. heapq:
Provides a min-heap priority queue structure, which
is essential for the A* algorithm. It ensures that the
next most promising state (with the lowest f(n) = g
+ h) is always selected for expansion.

3. typing: Used for type annotations such
as List, Tuple, and Optional, which improve code
readability, maintainability, and safety by clarifying
the expected input and output types of functions.

 These libraries work together to manage grid
representation, algorithmic state control, and type safety,
forming the backbone of the puzzle-solving logic.

B. Problem Representation
 The Block Blast problem is modeled using two input
text files: map.txt representing the current game state
and blocks.txt containing the three blocks to be placed. The
map file contains a rectangular grid where cells are either
empty (.) or occupied (*), with asterisks internally converted
to hashes (#) for standardization. Blocks are defined
in blocks.txt using unique uppercase characters (A, B, C),
where the parser identifies connected components and
constructs minimal bounding box arrays for each block using
numpy.
 Puzzle states are represented by the State class,
which stores the current board configuration as a 2D numpy
array, a list of integers (remaining_indices) indicating which
blocks are yet to be placed, the cost so far g, and a heuristic
value h that combines reachable empty cells. The A*
algorithm uses the total cost of f(n) to prioritize states in the
search queue, with the overridden __lt__ operator ensuring
that states with lower total costs are explored first, guiding
the search toward optimal solutions that efficiently place all
blocks while maximizing line clears.
C. Heuristic Function Implementation
 The heuristic function is defined to estimate how
promising a given board state is in terms of future block
placements. The key idea is to avoid getting stuck with
unreachable or fragmented board regions that cannot fit any
remaining blocks.
 The reachable_empty_cells function calculates the
number of empty cells that are part of a contiguous region
large enough to fit at least the smallest remaining block. It
does so by performing a Depth-First Search (DFS) over the
board, starting from each unvisited empty cell. If the
connected region meets the size requirement, its size is added
to the heuristic count. This encourages the algorithm to
favour board states that remain open and accessible for the
remaining pieces.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 7 Heuristic function implementation

(source: author's source code)
 This heuristic is both simple and effective, serving
as a guiding estimate without being overly optimistic. It
avoids overestimating the board’s flexibility, which could
otherwise lead the search astray.

D. A* Search Algorithm
 The core of the solver lies in the astar_solver
function, which implements the A* search algorithm. It
begins with the initial board state and pushes it into a priority
queue. At each iteration, the state with the lowest f(n) value
is expanded. If all blocks are placed, the current board is
returned as the solution.
 Each state expansion involves trying to place any
remaining block at all valid positions on the board, taking into
account that different order of the placement of the blocks
could generate different results. The validity of a placement
is checked using the can_place function, which verifies that
every non-empty cell in the block corresponds to an empty
cell on the board and does not exceed boundaries.
 If a block can be placed, the place_block function
creates a new board configuration by copying the current
board, overlaying the block at the specified position, and then
clearing any full rows or columns. These new configurations
are wrapped in new State objects and pushed into the heap for
further exploration. The algorithm continues until either a
valid full placement is found or the search space is exhausted.
 Each state expansion involves trying to place any
unplaced block at all valid positions on the board. The
validity of a placement is checked using
the can_place function:

Fig 8. can_place function

(source: author's source code)
 This function checks that every non-empty cell in
the block corresponds to an empty cell on the board and does
not exceed the board’s boundaries. If a block can be placed,
the place_block function creates a new board configuration

by copying the current board, overlaying the block at the
specified position, and then automatically clearing any
complete rows or columns. The line-clearing process checks
for rows and columns that contain no empty cells (all filled
with blocks) and removes them by setting all cells in those
lines back to empty (.), continues iteratively until no more full
lines can be found. This line-clearing feature is essential to
the Block Blast gameplay, as it creates additional space for
subsequent block placements and is often necessary to
successfully place all blocks on the board.

Fig 9. place_block function

(source: author's source code)
 These new configurations are wrapped in
new State objects and pushed into the heap for further
exploration. The algorithm continues until either a valid full
placement is found or the search space is exhausted.
 The main search process is handled by
the astar_solver function, which implements the A*
algorithm using a priority queue. The steps are as follows:
1. Initialization:

Fig 9. Initialization step of the A* function

(source: author's source code)

• The initial state is created using the starting board, a
list of False flags indicating that no blocks are
placed, and an initial cost g = 0.

• This state is pushed into a priority queue (heap)
using heapq.

2. Search Loop
• While the priority queue is not empty, the state with

the lowest f(n) = g + h is popped from the heap.
• If all blocks are placed (all(current.placed)), the

current board configuration is returned as the
solution.

3. State Tracking:

Fig 10. State tracking step of the A* function

(source: author's source code)
• To avoid redundant computation, each state is

uniquely identified by its board layout and
placement status.

• If a state has been visited before, it is skipped.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

4. Expansion

Fig 10. Expansion step of the A* function

(source: author's source code)
• For each unplaced block, the algorithm tries every

possible position (x, y) on the board.
• If the block can be placed (can_place returns True),

a new board is generated (place_block) and a new
state is created.

• This new state has g + 1 as its new path cost and
recalculates the heuristic h. It is then pushed into the
priority queue for exploration.

5. Failure Case
• If the heap is exhausted but still no complete

configuration has been found, the function
returns None, indicating that no valid placement
exists for all blocks.

V. TESTING AND ANALYSIS
Author tested few inputs of map.txt and blocks.txt:

1. Test Case 1
Input:

Fig 11. Test case 1 inputs

(source: author's source code)

Ouput:

Fig 12. Test case 1 output

(source: author's source code)

2. Test Case 2
Input:

Fig 13. Test case 2 inputs

(source: author's source code)

Output:

Fig 14. Test case 2 output

(source: author's source code)

3. Test Case 3
Input:

Fig 15. Test case 3 inputs

(source: author's source code)

Output:

Fig 16. Test case 3 output

(source: author's source code)
4. Test Case 4
Input:

Fig 17. Test case 4 inputs

(source: author's source code)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Output:

Fig 18. Test case 4 output

(source: author's source code)
 From the four test cases evaluated, the program

successfully found solutions for different combinations of
maps and blocks, including the combinations where the
solution is found only if the block inserted is clearing a row or
column first to make space for the other blocks. It also
correctly identified cases where no valid solution exists.

 This shows that the A algorithm works well and the
solution search has been adapted to match the unique
characteristics of Block Blast, including the line-clearing
mechanic that helps create space for the next blocks.

V. Conclusion

 In this project, author have successfully
implemented a Block Blast puzzle solver using the A* search
algorithm. The problem was formulated as a search over board
configurations, where each state represents a specific
arrangement of placed blocks. By combining the cost of
actions (g(n)) and a custom heuristic function (h(n)) that
estimates the remaining empty usable spaces, the A*
algorithm is able to effectively explore the most promising
paths in search of a complete solution.

 Through several test cases, including unsolvable
scenarios, it is demonstrated that this approach is both robust
and adaptable. However, due to the lack of rotation and
mirroring support, the algorithm is limited to straightforward
block orientations. Future improvements may include
enhancements such the search of a better heuristic function.

 Overall, this implementation shows that A* is a
viable and effective method for solving spatial logic puzzles
like Block Blast, where optimal placement and constraint
satisfaction are essential.

VI. Appendix
Github: https://github.com/aliyahusnaf/StimaPaper-
13523062.git
Bonus video: https://youtu.be/Ej478xvBR7k

VII. Acknowledgment

 Author would like to express sincere gratitude to God
Almighty for His blessings and guidance that made the
completion of this paper possible. The author also extends
appreciation to all individuals who supports author through
out the working of this paper.
 Special thanks are given to Mr. Rinaldi, Mr.
Monterico Adrian, S.T., M.T., and Dr. Nur Ulfa Maulidevi,
S.T., M.Sc., as lecturers of the Algorithm Strategy course, for
their support, encouragement, and clear explanation of the
concepts, especially regarding the A* algorithm, which is the

core of this paper. Lastly, the author acknowledges the
various sources and references that have provided valuable
information throughout the writing of this paper.

REFERENCES
[1] MUNIR, RINALDI. 2024. "Graf (Bag.

1)". https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf. Accessed 22 June 2025, 8:30 AM.

[2] MUNIR, RINALDI. 2024. "Pohon (Bag.
1)". https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/23-Pohon-Bag1-2024.pdf. Accessed 22 June 2025, 9:00 AM.

[3] MUNIR, RINALDI. 2024. "Route Planning (Bagian
2)". https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/22-Route-Planning-(2025)-Bagian2.pdf. Accessed 22 June 2025,
11:30 AM.

[4] PATEL, AMIT. 2025. "Heuristic from Amit's Thoughts on
Pathfinding". https://theory.stanford.edu/~amitp/GameProgramming/
Heuristics.html. Accessed 23 June 2025, 8:30 AM.

[5] PATEL, AMIT. 2025. "Introduction to A* from Amit's Thoughts on
Pathfinding". https://theory.stanford.edu/~amitp/GameProgramming/
AStarComparison.html. Accessed 23 June 2025, 3:00 PM.

[6] Dutta, Jita. 2024. “Application of Graph Theory in real Life”.
https://ijnrd.org/papers/IJNRD2410012.pdf. Accessed 23 June 2025.
10.00 PM.

[7] Balding. 2024. “Real World Examples of Tree Structures”.
https://www.baeldung.com/cs/tree-examples/ Accessed 23 June 2025.
10.10 PM.

PERSONAL STATEMENT
I hereby declare that the paper I have written is my own work,
not an adaptation or translation of someone else's paper, and
not plagiarism.

Jakarta, June 22 2025

Aliya Husna Fayyaza/13523062

https://github.com/aliyahusnaf/StimaPaper-13523062.git
https://github.com/aliyahusnaf/StimaPaper-13523062.git
https://youtu.be/Ej478xvBR7k
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/22-Route-Planning-(2025)-Bagian2.pdf
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://ijnrd.org/papers/IJNRD2410012.pdf
https://www.baeldung.com/cs/tree-examples/

