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Abstract—This paper presents an implementation of the A* 
search algorithm to solve the Block Blast puzzle. The game 
involves placing a fixed number of randomly shaped blocks 
into a two-dimensional board without overlapping or 
exceeding the board boundaries. The algorithm explores 
possible placements by evaluating board states based on the 
number of blocks placed and a heuristic estimation of usable 
space. The heuristic function computes the total area of 
empty regions large enough to fit the remaining blocks, 
ensuring admissibility by never overestimating the potential 
for block placement. Experimental results show that the A* 
algorithm is both effective and efficient in finding valid 
solutions or determining when no solution exists. This 
approach demonstrates the applicability of informed search 
algorithms in solving logic puzzles. 
Keywords—block puzzle, heuristic search, A* algorithm, 
game solver, pathfinding. 

I.  INTRODUCTION 
 There are many algorithms that can be used to solve 
logical puzzle games, ranging from brute force approaches to 
more advanced informed search techniques such as Greedy 
Best-First Search, Uniform Cost Search (UCS), and the A* 
(A Star) algorithm. Among these, A* is widely regarded as 
one of the most effective and versatile algorithms due to its 
ability to combine the advantages of UCS and Greedy Search. 
By using a heuristic to estimate the remaining cost, A* can 
efficiently guide the search process toward a valid solution 
while minimizing unnecessary explorations. 
 One puzzle game that can benefit from this approach 
is Block Blast, a tile-based puzzle game where players are 
given a limited set of block pieces and must place them 
strategically on a board to maximize coverage and avoid 
running out of space.  
 This paper presents a solution to the Block Blast 
puzzle using the A* algorithm. By modelling the board state 
and available pieces as nodes and transitions in a search 
space, A* can intelligently explore possible placements, 
aiming to find a complete solution where all pieces fit within 
the board. The following sections describe the formulation of 
the problem, the design of the heuristic, and the 
implementation of the solver. 

II. BASIC THEORY 

A. Graph 
 A graph G is formally defined as an ordered pair G 
= (V,E) where 𝑉 is a non-empty set of vertices and E is a non-
empty set of edges connecting pairs of vertices. For a 
structure to qualify as a graph, it must contain at least one 
vertex and one edge. The number of edges incident to a vertex 
is referred to as the degree of that vertex. 
 Graphs can be classified based on their structural 
properties. A simple graph is one that contains no loops 
(edges connecting a vertex to itself) and no multiple edges 
between the same pair of vertices. In contrast, an unsimple 
graph allows for loops and/or multiple edges. Unsimple 
graphs are further categorized into two types: multigraphs, 
which permit multiple edges between the same pair of 
vertices, and pseudographs, which include both loops and 
multiple edges. [1] 

 
Fig 1. Simple graph examples 

(source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)  

 
Fig 2. Unsimple graph examples 

(source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf) 
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Fig 3. Unsimple graph categories 

(source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf)  
 Another way to classify graphs is based on the 
directionality of their edges. An undirected graph has edges 
that do not point in any specific direction, meaning the 
connection between two vertices is bidirectional. On the other 
hand, a directed graph or digraph uses arrows to indicate the 
direction of each edge, signifying a one-way relationship 
between vertices.[1] 

 
Fig 4. Directed graph example 

(source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

- 2025/20-Graf-Bagian1-2024.pdf) 
 Graphs are widely used in various fields due to their 
ability to model relationships and connections. Applications 
include electrical circuit design, chemical compound 
structures, routing and scheduling, medical imaging, 
transportation networks, social media platforms, and 
computer network topologies.[6] 

B. Tree  
 A tree is a connected, undirected graph with no 
cycles. Formally, a graph G = (V,E) with n vertices is a tree 
if it satisfies any of the following equivalent conditions: 

1. G is connected and acyclic. 
2. Any two vertices are connected by exactly one 

simple path. 
3. G has n−1 edges and is connected. 
4. G has n−1 edges and no cycles. 
5. Adding any edge creates exactly one cycle. 
6. All edges are bridges. 

Furthermore, a forest is a collection of disjoint trees, or an 
acyclic graph that is not necessarily connected.[2] 

 In computer science, trees are used to represent 
hierarchical data. Their acyclic and connected nature makes 
them ideal for structures like game development, databases, 
and machine learning.[7] Trees are also used as the basis for 

many data structures such as binary trees, heaps, and syntax 
trees. 

C. Uninformed and Informed Search in Pathfinding 
 Search strategies are generally divided into two 

categories: uninformed or blind search and informed or 
heuristic-based search. Uninformed search algorithms do not 
utilize any information about the proximity of a state to the 
goal. They explore the search space blindly, typically using 
simple strategies such as Breadth-First Search (BFS), Depth-
First Search (DFS), or Uniform Cost Search (UCS).  

 In contrast, informed search algorithms incorporate 
additional knowledge in the form of heuristics to estimate the 
cost of reaching the goal from a given node. For example, 
there are the Greedy Best-First Search algorithm where it only 
consider the heuristic function to determine its expansion and 
the A* Algorithm where it also take the actual cost into 
account. This allows Greedy Best-First Search and A* to 
prioritize more promising nodes and significantly reduce the 
number of states explored during the search process[3] .Yet, 
because of its heuristic-only consideration, the Greedy Best-
First Search does not guaranteed to find the shortest path[5]. 

C. A* Algorithm 
 The A* (A star) algorithm is one of the most widely 
used informed search strategies in artificial intelligence and 
algorithm design. It is valued for 
its completeness and optimality, as long as the heuristic 
function employed is admissible—meaning it never 
overestimates the true cost to reach the goal. A* operates by 
evaluating each node using the cost function: 
 

𝑓(n) 	= 	g(n) 	+ 	h(n) 
 

where  g(n) represents the actual cost from the start node to 
the current node n, and h(n) is a heuristic estimate of the cost 
from node n to the goal. By combining both real and 
estimated costs, A* is able to strike a balance between depth-
first exploitation of known good paths and breadth-first 
exploration of new possibilities. 
 The algorithm proceeds by always expanding the 
node with the lowest f(n) value from a priority queue, 
ensuring that paths with the most promising cost estimates 
are explored first. The exploration algorithm itself uses the 
Best-First Search algorithm. This strategy guarantees that the 
first solution found is the optimal one, as long as the heuristic 
is admissible and consistent.[5] 

A* possesses the following key properties: 
• Completeness: A* is complete as long as the 

branching factor is finite and all edge costs are 
greater than zero. It will eventually find a solution if 
one exists, unless there are infinitely many nodes 
with cost 𝑓(𝑛) 	≤ 	𝑓(𝐺), where G is the goal node. 

• Time Complexity: In the worst case, time 
complexity is exponential, specifically 𝑂(𝑏𝑚), 
where b is the branching factor and m is the depth of 
the shallowest goal. 
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• Space Complexity: A* maintains all generated 
nodes in memory to guarantee optimality, which 
leads to a space complexity of 𝑂(𝑏𝑚) as well. 

• Optimality: A* is optimal provided that the heuristic 
function is admissible. It always finds the least-cost 
path to the goal.[3] 

 Due to these characteristics, A* is extensively 
applied in various domains such as pathfinding, puzzle 
solving, and route planning. Its performance, however, is 
heavily dependent on the heuristic function used. 
 Several heuristic functions are commonly used in 
search algorithms, each suited to different types of problems 
depending on the structure of the state space. One widely 
used heuristic is the Euclidean distance, which calculates the 
straight-line distance between two points. This is particularly 
effective in continuous, geometric spaces where diagonal 
movement is allowed and cost is proportional to physical 
distance.  
 Another popular heuristic is the Manhattan distance, 
which sums the absolute differences of the horizontal 
coordinate and the vertical coordinate. It is commonly used 
in grid-based environments where movement is restricted to 
horizontal and vertical directions, such as in mazes or tile-
based puzzles. The Chebyshev distance is another variant, 
defined as the maximum difference between the coordinates 
of two points. This heuristic is useful when movement in all 
eight directions is allowed, and each step has equal cost.[4] 

 Choosing the right heuristic function depends on the 
nature of the problem and the allowed movements in the state 
space. A well-designed heuristic helps reduce the search 
space while preserving admissibility and optimality. 
 
D. Admissible Heuristic 
 An admissible heuristic is a heuristic function that 
never overestimates the actual minimum cost from any node 
to the goal. Formally, for every node n, it must satisfy the 
condition: 

ℎ(𝑛) ≤ ℎ∗(𝑛)	 
 
where h*(n) is the true cost of the shortest path from 
node n to the goal. This characteristic makes an admissible 
heuristic optimistic, as it always estimates the remaining cost 
as equal to or less than the actual cost. The use of an 
admissible heuristic is critical for ensuring that the A* 
algorithm finds the optimal path. According to the 
admissibility theorem, if h(n) is admissible, then A* 
with tree-search is guaranteed to return an optimal solution, 
assuming all step costs are non-negative. 
 A classic example of an admissible heuristic is 
the straight-line distance (SLD) used in route-finding 
problems. SLD never overestimates the actual travel distance 
on a road map, making it a reliable heuristic for geographical 
search problems.[3] 

 
Fig 5. Inadmissible heuristic function example 

(source: 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/22-Route-Planning-(2025)-Bagian2.pdf) 
 

 If a heuristic is not admissible, A* may fail to find 
the optimal path. For example, if a node Y has g(Y)+h(Y)=74, 
while another node X in the optimal path has g(X)+h(X)=102 
due to an overestimated heuristic h(X), the algorithm will 
wrongly prioritize expanding node Y, and the optimal path 
through X may be ignored or delayed. Therefore, selecting a 
good admissible heuristic is crucial in practice. It not only 
guarantees correctness but also significantly reduces the 
search space, making A* both sound and efficient. 
 
E. Block Blast Game 

 
Fig 6. Block Blast game interface 

(source: https://blockblastonline.com) 
 Block Blast is a tile-based puzzle game played on a 
fixed 8×8 square grid. The player is presented with three 
blocks of random shapes, which must be placed onto the 
board. The objective is to fill entire rows or columns to clear 
them and score points. Once placed, blocks cannot be moved 
or rotated, making every decision permanent and strategic 
because the order of the placement of the blocks also matters. 
 The game ends when no combination of the 
placement order of the three available blocks can fit into the 
remaining empty spaces on the board. This constraint 
encourages players to think several moves ahead and manage 
space efficiently. 
This game can be modelled as a search problem, where: 

• The current configuration of the board represents the 
state. 
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• Placing a block at a legal position is considered an 
action. 

• The goal state is any configuration where all three 
blocks can be successfully placed. 

 By framing the game in this way, Block Blast 
becomes a suitable domain for applying search algorithms 
such as A*, particularly when evaluating different strategies 
for block placement and estimating usable space through 
heuristic functions. 

III. HEURISTIC FUNCTION USED 
 In the A* search algorithm, the heuristic function 
plays a critical role in estimating the desirability of a given 
state in relation to reaching the goal. In this implementation, 
the heuristic is designed to assess how much usable space 
remains on the board for placing the remaining blocks. The 
heuristic works by identifying all contiguous regions of 
empty cells on the board, summing the sizes of those regions 
that are at least large enough to fit the smallest remaining 
block, and then negating this value so that states with more 
usable space receive lower f(n) scores and are prioritized by 
A*. 
 Despite the unconventional approach of negating a 
space-based measurement, this heuristic remains admissible 
because it never overestimates the true cost to reach the goal. 
The key insight is that the chosen heuristic does not actually 
estimate cost, instead, it provides the quality of solution 
represented by the node. The heuristic makes no assumptions 
about whether that space will be used successfully, nor does 
it guarantee that the available space can accommodate all 
remaining blocks in a valid configuration. It simply counts 
empty regions without considering placement constraints, 
overlapping requirements, or the complex spatial 
relationships between different blocks (the row or column 
clearing constraint).  Since the heuristic only provides 
an optimistic upper bound on usable space, it never suggests 
that a goal state is closer than it actually is. Even when 
negated, the heuristic maintains its conservative nature by 
avoiding any overestimation of progress toward the goal. The 
negative values merely serve as a prioritization mechanism, 
ensuring that more spacious states are explored first, while 
the underlying measurement remains a safe underestimate of 
the actual solution complexity. This preservation of 
admissibility ensures that A* will find an optimal solution if 
one exists, while benefiting from informed search efficiency. 
 

IV. Implementation 
 The implementation of the Block Blast solver using 
the A* algorithm is structured into several modular 
components that handle input parsing, state representation, 
heuristic evaluation, search execution, and output 
visualization. Python is chosen due to its concise syntax and 
powerful support for data manipulation, which is especially 
beneficial for grid-based puzzle problems like Block Blast. 

A. Required Dependencies 
 In this implementation, several Python libraries are 
used to support core functionalities of the solver: 

1. numpy: 
Used extensively for numerical and matrix 
operations. In this implementation, numpy is 
responsible for representing the game board and 
blocks as 2D arrays, enabling efficient manipulation 
of grid-based data. 

2. heapq: 
Provides a min-heap priority queue structure, which 
is essential for the A* algorithm. It ensures that the 
next most promising state (with the lowest f(n) = g 
+ h) is always selected for expansion. 

3. typing: Used for type annotations such 
as List, Tuple, and Optional, which improve code 
readability, maintainability, and safety by clarifying 
the expected input and output types of functions. 

 These libraries work together to manage grid 
representation, algorithmic state control, and type safety, 
forming the backbone of the puzzle-solving logic. 

B. Problem Representation 
 The Block Blast problem is modeled using two input 
text files: map.txt representing the current game state 
and blocks.txt containing the three blocks to be placed. The 
map file contains a rectangular grid where cells are either 
empty (.) or occupied (*), with asterisks internally converted 
to hashes (#) for standardization. Blocks are defined 
in blocks.txt using unique uppercase characters (A, B, C), 
where the parser identifies connected components and 
constructs minimal bounding box arrays for each block using 
numpy.  
 Puzzle states are represented by the State class, 
which stores the current board configuration as a 2D numpy 
array, a list of integers (remaining_indices) indicating which 
blocks are yet to be placed, the cost so far g, and a heuristic 
value h that combines reachable empty cells. The A* 
algorithm uses the total cost of f(n) to prioritize states in the 
search queue, with the overridden __lt__ operator ensuring 
that states with lower total costs are explored first, guiding 
the search toward optimal solutions that efficiently place all 
blocks while maximizing line clears. 
C. Heuristic Function Implementation 
 The heuristic function is defined to estimate how 
promising a given board state is in terms of future block 
placements. The key idea is to avoid getting stuck with 
unreachable or fragmented board regions that cannot fit any 
remaining blocks. 
 The reachable_empty_cells function calculates the 
number of empty cells that are part of a contiguous region 
large enough to fit at least the smallest remaining block. It 
does so by performing a Depth-First Search (DFS) over the 
board, starting from each unvisited empty cell. If the 
connected region meets the size requirement, its size is added 
to the heuristic count. This encourages the algorithm to 
favour board states that remain open and accessible for the 
remaining pieces. 
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Fig. 7 Heuristic function implementation 

(source: author's source code) 
 This heuristic is both simple and effective, serving 
as a guiding estimate without being overly optimistic. It 
avoids overestimating the board’s flexibility, which could 
otherwise lead the search astray. 
 
D. A* Search Algorithm 
 The core of the solver lies in the astar_solver 
function, which implements the A* search algorithm. It 
begins with the initial board state and pushes it into a priority 
queue. At each iteration, the state with the lowest f(n) value 
is expanded. If all blocks are placed, the current board is 
returned as the solution.  
 Each state expansion involves trying to place any 
remaining block at all valid positions on the board, taking into 
account that different order of the placement of the blocks 
could generate different results. The validity of a placement 
is checked using the can_place function, which verifies that 
every non-empty cell in the block corresponds to an empty 
cell on the board and does not exceed boundaries.  
 If a block can be placed, the place_block function 
creates a new board configuration by copying the current 
board, overlaying the block at the specified position, and then 
clearing any full rows or columns. These new configurations 
are wrapped in new State objects and pushed into the heap for 
further exploration. The algorithm continues until either a 
valid full placement is found or the search space is exhausted. 
 Each state expansion involves trying to place any 
unplaced block at all valid positions on the board. The 
validity of a placement is checked using 
the can_place function: 

 
Fig 8. can_place function 

(source: author's source code) 
 This function checks that every non-empty cell in 
the block corresponds to an empty cell on the board and does 
not exceed the board’s boundaries. If a block can be placed, 
the place_block function creates a new board configuration 

by copying the current board, overlaying the block at the 
specified position, and then automatically clearing any 
complete rows or columns. The line-clearing process checks 
for rows and columns that contain no empty cells (all filled 
with blocks) and removes them by setting all cells in those 
lines back to empty (.), continues iteratively until no more full 
lines can be found. This line-clearing feature is essential to 
the Block Blast gameplay, as it creates additional space for 
subsequent block placements and is often necessary to 
successfully place all blocks on the board. 

 
Fig 9. place_block function 

(source: author's source code) 
 These new configurations are wrapped in 
new State objects and pushed into the heap for further 
exploration. The algorithm continues until either a valid full 
placement is found or the search space is exhausted. 
 The main search process is handled by 
the astar_solver function, which implements the A* 
algorithm using a priority queue. The steps are as follows: 
1. Initialization: 

 
Fig 9. Initialization step of the A* function 

(source: author's source code) 
 

• The initial state is created using the starting board, a 
list of False flags indicating that no blocks are 
placed, and an initial cost g = 0. 

• This state is pushed into a priority queue (heap) 
using heapq. 

2. Search Loop 
• While the priority queue is not empty, the state with 

the lowest f(n) = g + h is popped from the heap. 
• If all blocks are placed (all(current.placed)), the 

current board configuration is returned as the 
solution. 

3. State Tracking: 

 
Fig 10. State tracking step of the A* function 

(source: author's source code) 
• To avoid redundant computation, each state is 

uniquely identified by its board layout and 
placement status. 

• If a state has been visited before, it is skipped. 
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4. Expansion 

 
Fig 10. Expansion step of the A* function 

(source: author's source code) 
• For each unplaced block, the algorithm tries every 

possible position (x, y) on the board. 
• If the block can be placed (can_place returns True), 

a new board is generated (place_block) and a new 
state is created. 

• This new state has g + 1 as its new path cost and 
recalculates the heuristic h. It is then pushed into the 
priority queue for exploration. 

5. Failure Case 
• If the heap is exhausted but still no complete 

configuration has been found, the function 
returns None, indicating that no valid placement 
exists for all blocks. 

V. TESTING AND ANALYSIS 
Author tested few inputs of map.txt and blocks.txt: 

1. Test Case 1 
Input: 

 
Fig 11. Test case 1 inputs 

(source: author's source code) 
 

Ouput: 

 
Fig 12. Test case 1 output 

(source: author's source code) 
 
 
 
 

2. Test Case 2 
Input: 

 
Fig 13. Test case 2 inputs 

(source: author's source code) 
 

Output: 

 
Fig 14. Test case 2 output 

(source: author's source code) 
 

3. Test Case 3 
Input: 

 
Fig 15. Test case 3 inputs 

(source: author's source code) 
 

Output: 

 
Fig 16. Test case 3 output 

(source: author's source code) 
4. Test Case 4 
Input: 

 
Fig 17. Test case 4 inputs 

(source: author's source code) 
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Output: 

 
Fig 18. Test case 4 output 

(source: author's source code) 
 From the four test cases evaluated, the program 

successfully found solutions for different combinations of 
maps and blocks, including the combinations where the 
solution is found only if the block inserted is clearing a row or 
column first to make space for the other blocks. It also 
correctly identified cases where no valid solution exists. 

 This shows that the A algorithm works well and the 
solution search has been adapted to match the unique 
characteristics of Block Blast, including the line-clearing 
mechanic that helps create space for the next blocks. 

 
V. Conclusion 

 In this project, author have successfully 
implemented a Block Blast puzzle solver using the A* search 
algorithm. The problem was formulated as a search over board 
configurations, where each state represents a specific 
arrangement of placed blocks. By combining the cost of 
actions (g(n)) and a custom heuristic function (h(n)) that 
estimates the remaining empty usable spaces, the A* 
algorithm is able to effectively explore the most promising 
paths in search of a complete solution. 

 Through several test cases, including unsolvable 
scenarios, it is demonstrated that this approach is both robust 
and adaptable. However, due to the lack of rotation and 
mirroring support, the algorithm is limited to straightforward 
block orientations. Future improvements may include 
enhancements such the search of a better heuristic function. 

 Overall, this implementation shows that A* is a 
viable and effective method for solving spatial logic puzzles 
like Block Blast, where optimal placement and constraint 
satisfaction are essential. 

VI. Appendix 
Github: https://github.com/aliyahusnaf/StimaPaper-
13523062.git 
Bonus video: https://youtu.be/Ej478xvBR7k 
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